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Dromion interactions of „2¿1…-dimensional nonlinear evolution equations
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Starting from two line solitons, the solution of integrable (211)-dimensional mKdV system and KdV
system in bilinear form yields a dromion solution or a ‘‘Solitoff’’ solution. Such a dromion solution is
localized in all directions and the Solitoff solution decays exponentially in all directions except a preferred one
for the physical field or a suitable potential. The interactions between two dromions and between the dromion
and Solitoff are studied by the method of figure analysis for a (211)-dimensional modified KdV equation and
a (211)-dimensional KdV type equation. Our analysis shows that the interactions between two dromions may
be elastic or inelastic for different forms of solutions.

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Although the soliton structures and properties
(111)-dimensional integrable nonlinear evolution equatio
have been now very well understood, the soliton structur
higher spatial dimensions continues to be much more in
cate. Recently, since the pioneering work of Boitiet al. @1#,
the study of the exponentially localized soliton solutio
called dromions and ‘‘Solitoff’’ solutions constituting an in
termediate state between dromions and plane solitons in
11)-dimensional has been attracting the attention of ph
cists and mathematicians. Usually, dromion solutions
driven by two or more nonparallel straight-line ghost so
tons. For instance, for the Davey-Stewartson~DS! @2# and
the Nizhnik-Novikov-Veselov~NNV! @3# equations, their
dromion solutions are driven by two perpendicular line gh
solitons @1,4#. For the Kadomtsev-Petviashvili~KP! equa-
tion, the dromion solutions are driven by nonperpendicu
line ghost solitons@5#. Furthermore, there exist some dr
mion solution of the physical fields for one type of nonline
models such that the DS, NNV, and asymmetrical NN
~ANNV ! @6#. However, for other types of equations like th
KP and the breaking soliton equations, the dromion soluti
exist only for some suitable potentials of the fields@5,7#. The
more generalized dromion solutions, which are driven
curved and straight line solitons for some types
(211)-dimensional nonlinear models, were found more
cently @8,9,10#.

In this paper, we are interested in the interactions of d
mions for (211)-dimensional integrable systems. We kno
that soliton supplies good applied prospects in many field
natural science such as plasmas, hydrodynamics, nonli
optics, fiber optics, solid-state physics, and the interac
property of soliton plays an important role in developi
many applications. Therefore, the studies of the interac
property of soliton for integrable models is more significa
It is well known that the interactions of (111)-dimensional
solitons are elastic. This means that there is no exchang
energy~no change of shape and velocity! among interacting
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PRE 621063-651X/2000/62~4!/5738~7!/$15.00
f
s
in
i-

(2
i-
e

t

r

r

s

y
f
-

-

of
ar
e

e
.

of

solitons. However, different results have been reported
(211)-dimensional integrable systems. Consequently,
dromion interactions are inelastic for the DS equation@11#,
but for NLBQE and the Sawada-Kotera~SK! system they are
elastic@12,13#. We would like to know the reasons why th
interaction between dromions is elastic for some models
inelastic for others. In addition, we also hope to lea
whether there are different interactive properties when d
mions are interacting due to the different selection of para
eters or different form of solution for the sam
(211)-dimensional integrable model. To our knowledg
some works about Solitoff solution have been presented
cently @14,15#. We think there may be some relationship b
tween Solitoff solution and dromion solution. Therefore, w
are also interested in this topic. In order to answer th
questions, we study a (211)-dimensional integrable mKdV
equation and a KdV type equation in detail.

The paper is organized as follows. In Sec. II, the mu
dromion solutions are given for the (211)-dimensional in-
tegrable mKdV family and KdV system. Plots of interactio
between two dromions and between Solitoff and dromion
the mKdVE and KdV type equation are shown in Sec. I
Section IV includes a summary and discussion.

II. MULTIDROMION SOLUTION OF TWO
„2¿1…-DIMENSIONAL INTEGRABLE SYSTEMS

A. Multidromion solution of the mKdV family

The bilinear form of (211)-dimensional mKdV family
can be written as

A~DX!~ f • f 1g•g![A~Dx ,Dy ,Dt!~ f • f 1g•g!50, ~1!

B~DX! f •g[B~Dx ,Dy ,Dt! f •g50, ~2!

whereA andB are even and odd functions of their variabl
DX5(Dx ,Dy ,Dt), X5(x,y,t), respectively. TheD opera-
tors are defined by@16,17#

Dx
nDy

mDt
pf •g[~]x2]x8!

n~]y2]y8
!m~] t2] t8!

p

3@ f ~X!•g~X8!#uX85X . ~3!
5738 ©2000 The American Physical Society
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It may be proved that a single dromion solution of the eq
tion system~1! and ~2! exists if a physical field is defined
suitably

w5L~]X!K~]X!@ tan21~g/ f !#

[~a1]x1b1]y!~a2]x1b2]y!@ tan21~g/ f !#, ~4!

wherea1 , b1 , a2 , andb2 , should be selected such that th
linear operatorsL(]X), K(]X) annihilate two line solitons

f 511a12exp~h11h2!, g5exp~h1!1exp~h2!, ~5!

h i5pix1qiy1v i t1const[Pi•X1const, ~6!

with

Pi5~pi ,qi ,v i !, ~ i 51,2!, B~Pi !50,
~7!

a1252
A~P12P2!

A~P11P2!
.

That is to say, the dromion solutions are driven by ghost l
solitons, which are nonparallel to each other in the sp
time (x,y,t). Two line solitons are annihilated by two linea
operatorsL(]X) and K(]X) while a dromion, which is lo-
cated at the cross point of the two line solitons, is surviv
Performing a space transformation

p1x1q1y5px1 , p2x1q2y5qy1 ,
~8!

D[p1q22p2q1Þ0,

and fixing the constantsai , bi , in Eq. ~4! as a1
52(q1q)/D, b15(p1q)/D, a25(q2p)/D, and b2
52(p2p)/D, we can rewrite Eqs.~4!–~6! as

w5~a1]x1b1]y!~a2]x1b2]y!@ tan21~g/ f !#

[]x1
]y1

@ tan21~g/ f !#, ~9!

f 511a12exp~h11h2!, g5exp~h1!1exp~h2!,
~10!

h15px11v1t1const, h25qy11v2t1const.

Now let us discuss in detail the dromion structures for
following (211)-dimensional integrable mKdV equatio
@18#:

uy1uttt1uxxx13uxvxx13utv tt2ux
32ut

350, vxt5uxut .

~11!

By making use of dependent variable-related transforma

u522 tan21S g

f D , v5 log~g21 f 2!, ~12!

the bilinear forms of Eq.~11! can be shown as

A~DX!~ f • f 1g•g!5DxDt~ f • f 1g•g!50, ~13!

B~DX! f •g5~Dx
31Dt

31Dy! f •g50. ~14!
-

e
e

.

e

n

By means of the general method developed by Hirota, thN
line soliton solution of the equation system~13! and~14! can
be written as

f ~x,y,t !5 (
n50

N/2

(
NC2n

a~ i 1 ,i 2 ,...,i 2n!

3exp~h i11h i21¯1h i2n!, ~15!

g~x,y,t !5 (
m50

@~N21!/2#

(
NC2m11

a~ j 1 , j 2 ,...,j 2m11!

3exp~h j 11h j 21¯1h j 2m11!, ~16!

a~ i 1 ,i 2 ,...,i n!5H Pk,l
~n!a~ i k ,i l ! for n>2

1 n50,1,
~17!

a~ i k ,i l !52
A~Pik2Pil !

A~Pik1Pil !
52

~pik2pil !~v ik2v i l !

~pik1pil !~v ik1v i l !
,

~18!

h i5pix1qiy1v i t1h i0 , ~19!

B~Pik!5pi
31v i

31qi50. ~20!

@N/2# denotes the maximum integer which does not exc
N/2 andni0 is an arbitrary but finite real constant related
the phase of thei th soliton. NCn indicates summation ove
all possible combination ofn elements taken fromN, and
P i ,l

(n) indicates the product of all possible combinations of t
n elements. From Eqs.~18! and ~20!, we know becauseai ,
bi , areqi , pi dependent, the multidromion solutions for th
potentialw given by Eq.~9! are allowed only for a specia
form such that two linear operatorsai]x1bi ]y( i 51,2) with
fixed ai , bi annihilate all the line solitons. In other word
the only allowed line solitons must be perpendicular to
axes in the new space coordinatesx1 andy1 . So the multi-
dromion solution exists only for the following potentia
form:

w5]x1
]y1

@ tan21 g~x1 ,y1 ,t !/ f ~x1 ,y1 ,t !#, ~21!

where the forms ofg(x1 ,y1 ,t) and f (x1 ,y1 ,t) are the same
as that of Eqs.~15! and ~16!, but h i should be taken as

h i5pix1qiy1v i t1h i05pi8x11v i t1h i0 or
~22!

h i5pix1qiy1v i t1h i05qi8y11v i t1h i0 .

As an example, we write down the explicit forms off andg
for N53:

f ~x,y,t !511a~1,2!exp~h11h2!1a~1,3!exp~h11h3!

1a~2,3!exp~h21h3!, ~23!

g~x,y,t !5exp~h1!1exp~h2!1exp~h3!

1a~1,2!a~1,3!a~2,3!exp~h11h21h3!,

~24!
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FIG. 1. The plots of the interaction of two dromions for mKdVE formed by a three-line soliton which are characterized byh15
1
2 x

1y2
1
8 91/382/3t5 1

2 x12
1
8 91/382/3t, h252x1

1
2 y2

1
2 171/322/3t5 1

2 y12
1
2 171/322/3t, and h35x12y231/3t5x1231/3t about potentialw. The

times of the figure read:~a! t5220, ~b! t50, ~c! t520. ~d! Cross section plot (w560.02) in correspondence with~a!, ~b!, and~c!. ~e! and
~f! Two cross section plots of dromionA (w560.02,60.04, and60.05! at time taken as 20 and 150.
be
h i5pi8x1v i t1h i0 or h i5qi8y1v i t1h i0 , ~25!

pi
31v i

31qi50. ~26!

B. Multi-dromion solutions of the „2¿1…-dimensional
KdV system

The bilinear form of a (211)-dimensional KdV system is
given by

A~DX! f • f [A~Dx ,Dy ,Dt! f • f 50, ~27!
where A is an even function of their variable. It can
proved that ann ‘‘plane’’ soliton solution, if it exists, can
always be constructed for an equation of type~27! in the
standard way@5,19#:

f 511(
i 51

n

exp~h i !1(
i , j

n

ai j exp~h j1h j !

1 (
i , j ,k

n

ai j aikajk exp~h i1h j1hk!

1¯1S)
i , j

ai j DexpH (
i 51

n

h iJ , ~28!
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ai j 52
A~Pi2Pj !

A~Pi1Pj !
.0, ~29!

h i5pix1qiy1v i t1h i0 , A~pi ,qi ,v i !50. ~30!

For the general system~28!, the physical field possessin
dromion solutions that are localized in all directions and c
structed by line solitons, should be defined as

w[L~]X!K~]X!ln f 5~a1]x1b1]y!~a2]x1b2]y!ln f .
~31!

Equation~31! implies that two kinds of nonparallel line sol
tons are anihilated by two nonparallel linear operatorsL(]X)
and K(]X) while the dromion which is located at the cro
point of the two-line solitons is survived. According to th
same reason above if we take transformation of Eq.~8!, Eq.
~31! can be changed as

FIG. 2. The plots of the interaction of two dromions fo
mKdVE about potentialw. The related three-line solitons ar
determined by h152x14y2121/3t52x12121/3t, h252x1

1
2 y

2
1
2 171/322/3t5 1

2 y12
1
2 171/322/3t, h35

1
2 x1y2

1
8 91/382/3t5 1

2 x1

2
1
8 91/382/3t5. The times of the figure read:~a! t5215, ~b! t50,

and ~c! and t58.
-

w5]x1
]y1

ln f . ~32!

For simplicity, we shall discuss the dromion structure of t
following ANNV equation:

ut1uxxx13FuS E uxdyD G
x

50 ~33!

or

ut1uxxx13@uv#x50; ux5vy . ~34!

The ANNV equation~34! may be considered as a model f
an incompressible fluid whereu andv are the components o
the ~dimensionless! velocity @19#. The spectral transforma
tion for this system has been investigated in Refs.@6# and
@20#. This system has been considered also in Ref.@21# as a
generalization to (211) dimensions of the results from Hi
rota and Satsuma@22#. The nonclassical symmetries, Pai
levé property, and similarity solutions of the system ha
been studied by Clarkson and Mansfield@23#. Equation~33!
or ~34! has the bilinear form@24#

u52~ log f !xy , v52~ log f !xx , ~35!

~DyDt1DyDx
3! f • f 50. ~36!

Obviously, Eq.~36! has the multisolitons solution form ex
pressed by Eq.~28!. We write down the three-soliton solu
tion expression here.

f 511exp~h1!1exp~h2!1exp~h3!1a12exp~h11h2!

1a13exp~h11h3!1a23exp~h21h3!

1a12a13a23exp~h11h21h3!, ~37!

h i5pix1qiy1v i t1h i0 , qiv i1qipi
350, ~38!

ai j 52
A~pi2pj !

A~pi1pj !
52

~qi2qj !~v i2v j1~pi2pj !
3!

~qi1qj !~v i1v j1~pi1pj !
3!

.

~39!

The physical field with dromion solution reads

u52~ log f !x1y1
. ~40!

There is another solution form about Eq.~36! except for the
standard three soliton solution of Hirota. Such solution
given by

f 511exp~h1!1exp~h2!1exp~h3!1a13exp~h11h3!

1a23exp~h21h3!, ~41!

a1352
~q32q2!~q21q321!

~q21q3!~q22q12q3!
,

~42!

a2352
~q32q2!~p22p3!

~p21p3!~q21q3!
, v i52pi

3.

It can easily checked that Eq.~41! is indeed a solution of
Eqs.~33! and ~36!.
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FIG. 3. The plots of the interaction of two dromions for KdVE about fieldu determined by Eq.~39!. The solitons are characterized b
h15x1

1
2 y2t5x12t, h25

3
2 x1

3
2 y2

27
8 t5 3

2 y12
27
8 t, and h35

1
2 x1

1
4 y2

1
8 t5 1

2 x12
1
8 t. The times of the figure read:~a! t5220, ~b! t

50, and~c! t520. ~d! Cross section plot (2u50.05) in correspondence with~a!, ~b!, and~c!. ~e! and~f! Two cross section plots of dromion
A (2u50.1, 0.2, and 0.3! at time taken as 20 and 150.
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III. DROMION INTERACTIONS

It is known that in (111) dimensions, there is no ex
change of physical quantities like energy and momentum
the solitons after collision. Except for the phase shifts,
velocities and shapes are all remained unchanged.

We hope to know whether a similar property is valid
not for the interactions among dromions f
(211)-dimensional integrable models. Especially, we ho
to learn whether the interactions are dependent on param
and solution form or not.

It is difficult to study the interaction of the dromions an
lytically because of the complexity of the multidromion s
f
e

e
ter

lutions. It is more straightforward to study the dromion i
teractions graphically.

Figures 1 and 2 are the interaction plots of two dromio
that are formed by three ghost line solitons for the mKd
equations~13! and ~14! about the potential

w5]x1
]y1

tan21S g

f D . ~43!

In Fig. 1, the three ghost line solitons are characterized

h15 1
2 x1y2 1

8 91/382/3t5 1
2 x12 1

8 91/382/3t,
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h252x1 1
2 y2 1

2 171/322/3t5 1
2 y12 1

2 171/322/3t, ~44!

h35x12y231/3t5x1231/3t

and a(1,2), a(1,3), anda(2,3), determined by paramete
(pi ,qi) are all nonzero in Eqs.~15! and ~16!. In Figs. 1~a!,
1~b!, and 1~c!, the timet is taken as220, 0, and 20, respec
tively. Figure 1~d! is a cross section plot of the two dromion
before and after interaction in correspondence with F
1~a!, 1~b!, and 1~c!, respectively whilew5const560.02.
Comparing Fig. 1~d! with Figs. 1~a!–1~c!, one can clearly
see that the shapes of two dromions are totally the s
when they are interacting, this means there is no exchang
the energy and momentum but there are the phase sh
Figure 1~e! and 1~f! are the cross section plots of the dr
mion A at timet, taken as 20 and 150, respectively, wherew
is taken as60.02,60.04, and60.05. We found the shape o
dromionA at time t5150 is the same as that at timet520.
That is to say the shape of dromion is stationary if they le
the area of interaction far away.

In Fig. 2, three ghost line solitons characterized by

h152x14y2121/3t52x12121/3t,

h252x1 1
2 y2 1

2 171/322/3t5 1
2 y12 1

2 171/322/3t, ~45!

h35 1
2 x1y2 1

8 91/382/3t5 1
2 x12 1

8 91/382/3t.

Because of the value of the parameter in Eq.~45!, a(1,2)
50, a(1,3)Þ0, a(2,3)Þ0 in Eqs. ~15! and ~16!. In Figs.
2~a!, 2~b!, and 2~c!, the time is taken as215, 0, and 8,
respectively. Unlike in Fig. 1, from Figs. 2~a!–2~c!, we can
see that the shapes of two dromions are changed after i
action. Conclusively, there are exchanges of energy and
mentum between the dromions when they are interacting

Figure 3 is the interacting plots of two dromions, whic
formed by three ghost line solitons for the ANNVE~34!
about physical field

u52~ log f !x1y1
, ~46!

where the functionf is determined by Eq.~37! while three
line solitons are determined by

h15x1 1
2 y2t5x12t,

h25 3
2 x1 3

2 y2 27
8 t5 3

2 y12 27
8 t, ~47!

h35 1
2 x1 1

4 y2 1
8 t5 1

2 x12 1
8 t.

Because of the selection of parameter (pi ,qi) in Eq. ~47!, the
interacting constantsa(1,2), a(1,3), anda(2,3) are all non-
zero in Eq.~37!. In Figs. 3~a!, 3~b!, and 3~c!, the time is
taken as220, 0, and 20, respectively. Figure 3~d! is cross
section plot of the two dromions before and after interact
in correspondence with Figs. 3~a!–3~c!. Figures 3~e! and 3~f!
are the cross section plots of the dromionA at time taken as
20 and 150, respectively, whereu is taken as20.1, 20.2,
and20.3.

Figure 4 is also the interacting plots of two dromion
Eq. ~34! about physical field~46!. Functionf in Eq. ~46! is
determined by Eq.~41! while three line solitons are charac
terized by
s.

e
of
ts.

e

er-
o-

n

h15 1
2 y5 1

2 y1 ,

h252x1y28t52x128t, ~48!

h353x1 3
2 y227t53x1227t.

Obviously, from Fig. 3, we can see that the interacting pro
erties between dromions for the KdV type equation~36! are
the same as that of the mKdV equation shown by Fig.
That is to say if the solution of the equation can be taken
the standard form of Hirota, the interaction among dromio
is elastic. Figure 4 show us a very interesting phenom
between Solitoff and dromion. One Solitoff and one dromi
become one Solitoff after interaction.

IV. SUMMARY AND DISCUSSIONS

In summary, we have obtained some multidromion so
tions of the (211)-dimensional mKdV type equation an
KdV type equation for some suitable potentials or physi

FIG. 4. A solitoff-dromion interaction of KdVE about fieldu
determined by Eq.~44!. The related three-line solitons are chara
terized byh15

1
2 y5

1
2 y1 , h252x1y28t52x128t, andh353x

1
3
2 y227t53x1227t. The times in the figure are~a! t526, ~b!

t50, and~c! t56.
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fields. The multidromions are constructed by multiline so
tons, e.g., a single dromion is constructed by two line s
tons, a two-dromion solution is constructed by three l
solitons. All the line solitons should be parallel to the ne
axes$x1 ,y1%.

For (111)-dimensional integrable models, like the Kd
equation, the interaction among solitons is completely e
tic. There is no energy and momentum exchange among
tons when they are interacting. The only effect of the soli
interaction is the phase shifts. However, for t
(211)-dimensional mKdV family and KdV system, ther
are some different interactive properties in one model
cause of different forms of solutions. If a multisoliton sol
tion accords with the standard form of Hirota@all interacting
constantsa( i , j ) are nonzero#, the interacting between two
dromions formed by three ghost line solitons is complet
elastic ~there is no exchange of energy and momentum
cept for the phase shift!. This interaction is similar to that in
the (111)-dimensional models. If one of three interactin
constants is zero~i.e., the form of multisoliton solution is
different from the standard form of Hirota!, the interaction
between two dromions is not completely elastic~there is
change of shape and exchange of energy and momentum!. In
fact, this inelastic interaction can be considered as reso
behavior of solutions@15#. We study also the behavior o
solution when t→` through the graphical method. It i
found that the shapes of dromions will be not changed w
the time t increases if they leave the area of interaction
away. This means that dromions constructed in this way
stationary if they don’t meet each other.

We have given out the pictures of interaction f
(211)-dimensional integrable mKdVE and KdV type equ
tion. There are different interaction behaviors between d
mions in one model. The conclusion given above is sim
to the collision of the classical particles. It is known that t
collision between two classical particles may be elastic
s.

. A
-
i-
e

s-
li-
n

-

y
-

nt

n
r
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-
r

r

inelastic according to the material properties. In this pap
we find there are the same interactive properties between
dromions, they may be elastic, or inelastic according
whether the interaction constants equal zero or not.

Though we give only the details of dromion interactio
for one equation of mKdV family and one equation of Kd
system here, we studied also the dromion solutions and t
interactions for other types of KdV equations, like the
11)-dimensional Sawada-Kotera equation@25,13#

ut5~uxxxx15uuxx1
5
3 u315uxy!x25E uyydx15uuy

15uxE uydx ~49!

and mKdV equations, such as given by Tamizhmaniet al.
@26#

uxyt1uxvyt1utvxy50; vxt5uxut . ~50!

Similar dromion solutions and the totally same interacti
properties for Eqs.~49! and ~50! can be obtained.

It seems that for us all the conclusions given above
valid for all the (211)-dimensional KdV type and mKdV
type equations. Whether the similar phenomena could t
place in other (211)-dimensional integrable models and/
even in (111)-dimensional integrable models is worth fu
ther studies.
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