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Starting from two line solitons, the solution of integrable+2)-dimensional mKdV system and KdV
system in bilinear form yields a dromion solution or a “Solitoff” solution. Such a dromion solution is
localized in all directions and the Solitoff solution decays exponentially in all directions except a preferred one
for the physical field or a suitable potential. The interactions between two dromions and between the dromion
and Solitoff are studied by the method of figure analysis for & {2-dimensional modified KdV equation and
a (2+1)-dimensional KdV type equation. Our analysis shows that the interactions between two dromions may
be elastic or inelastic for different forms of solutions.

PACS numbds): 42.65.Tg

I. INTRODUCTION solitons. However, different results have been reported for
(2+1)-dimensional integrable systems. Consequently, the
Although the soliton structures and properties ofdromion interactions are inelastic for the DS equafibf],

(1+1)-dimensional integrable nonlinear evolution equationsout for NLBQE and the Sawada-Kotef@K) system they are
have been now very well understood, the soliton structure irelastic[12,13. We would like to know the reasons why the
higher spatial dimensions continues to be much more intriinteraction between dromions is elastic for some models and
cate. Recently, since the pioneering work of Beitial. [1], inelastic for others. In addition, we also hope to learn
the study of the exponentially localized soliton solutionswhether there are different interactive properties when dro-
called dromions and “Solitoff” solutions constituting an in- mions are interacting due to the different selection of param-
termediate state between dromions and plane solitons in (gters or different form of solution for the same
+1)-dimensional has been attracting the attention of physi¢2+ 1)-dimensional integrable model. To our knowledge,
cists and mathematicians. Usually, dromion solutions arsome works about Solitoff solution have been presented re-
driven by two or more nonparallel straight-line ghost soli- cently[14,15. We think there may be some relationship be-
tons. For instance, for the Davey-Stewartd@8) [2] and  tween Solitoff solution and dromion solution. Therefore, we
the Nizhnik-Novikov-Veselov(NNV) [3] equations, their are also interested in this topic. In order to answer these
dromion solutions are driven by two perpendicular line ghosjuestions, we study a (21)-dimensional integrable mKdV
solitons [1,4]. For the Kadomtsev-PetviashvilKP) equa- equation and a KdV type equation in detail.
tion, the dromion solutions are driven by nonperpendicular The paper is organized as follows. In Sec. I, the multi-
line ghost solitond5]. Furthermore, there exist some dro- dromion solutions are given for the ¢21)-dimensional in-
mion solution of the physical fields for one type of nonlineartegrable mKdV family and KdV system. Plots of interaction
models such that the DS, NNV, and asymmetrical NNVbetween two dromions and between Solitoff and dromion for
(ANNV) [6]. However, for other types of equations like the the mKdVE and KdV type equation are shown in Sec. Ill.
KP and the breaking soliton equations, the dromion solution&ection IV includes a summary and discussion.
exist only for some suitable potentials of the fie]8s7]. The
more generalized dromion solutions, which are driven by II. MULTIDROMION SOLUTION OF TWO
curved and straight line solitons for some types of (2+1)-DIMENSIONAL INTEGRABLE SYSTEMS

(2+1)-dimensional nonlinear models, were found more re-
cently[8,9,10. A. Multidromion solution of the mKdV family

In this paper, we are interested in the interactions of dro- The pjlinear form of (2+1)-dimensional mKdV family
mions for (2+ 1)-dimensional integrable systems. We know can pe written as
that soliton supplies good applied prospects in many fields of
natural science such as plasmas, hydrodynamics, nonlinear A(Dy)(f-f+g-9)=A(D,,D,,D)(f-f+g-9)=0, (1)
optics, fiber optics, solid-state physics, and the interactive
property of soliton plays an important role in developing B(Dy)f-g=B(D,D,,Dy)f-g=0, )
many applications. Therefore, the studies of the interactive
property of soliton for integrable models is more significant.where A andB are even and odd functions of their variables

It is well known that the interactions of (d1)-dimensional p,=(p,,D,,D,), X=(x,y,t), respectively. TheD opera-
solitons are elastic. This means that there is no exchange girs are def)ilned bj16,17

energy(no change of shape and velogigmong interacting
DIDYDPf-g=(dy— dy)"(dy—dy,) (3= dy)P
*Mailing address. XLE(X)-g(X" ) xr=x - (€)
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It may be proved that a single dromion solution of the equaBy means of the general method developed by HirotaNhe
tion system(1) and (2) exists if a physical field is defined line soliton solution of the equation systdidB) and(14) can
suitably be written as

N/2

w=L(ax)K(dx)[tan *(g/f)] =S S aliviissenion)
s Yst)— 1+125--5l2n
C

=(a;dx+b1dy) (295 +bydy)[tan 1(g/f)], (4 n=0 NCan
wherea,, by, a,, andb,, should be selected such that the XexXp(7int Mgt ign), (15
linear operatord (dyx), K(dx) annihilate two line solitons [(N=-1)/2]
X,Y,t)= A(J1sj2re-n)
f=l+apexpni+ 7)., g=expn)+expny), (5) 90y 0= & & aludzedan)
7= PiX+q;y+ w;t+const= P, - X + const, (6) Xexp(mj1t izt F iamea), (16)
with o _ MYa(i,ip) for n=2
a(iq,in,ehin)= 1 n=01 a7
Pi=(pi.gi @), (i=12, B(P;)=0, o
@ A(Pik—Pii) _ (Pik—Pil) (@i~ i)
Py A(Pl—_PZ) aic,d)=- A(p?k+ p?l) - (pfk_;_ p?l)(wfk_}w?l) '
12 A(Pl+ PZ) . ik il ik il ik il (18)
That is to say, the dromion solutions are driven by ghost line 7i=PiX+ QY+ oit+ 70, (19
solitons, which are nonparallel to each other in the space S o
time (x,y,t). Two line solitons are annihilated by two linear B(P;)= pi3+wi3+qi:0- (20)

operatorsL (dx) and K(dx) while a dromion, which is lo-
cated at the cross point of the two line solitons, is survived|N/2] denotes the maximum integer which does not exceed

Performing a space transformation N/2 andn;q is an arbitrary but finite real constant related to
the phase of théth soliton. \C,, indicates summation over
PiX+d1y=pXy, PX+02y=0qYy1, all possible combination oh elements taken fronN, and
(8 117 indicates the product of all possible combinations of the
A=p10,—p20:#0, n elements. From Eq€18) and (20), we know because; ,

- . b;, areq;, p; dependent, the multidromion solutions for the
and fixing the constantsy;, bj, in Eq. (4) as a potentialw given by Eq.(9) are allowed only for a special
=—(@a)/a,  bi=(p:a)/A,  a;=(qzp)/A,and by g0 5uch that two linear operatoesd, + b dy(i=1,2) with

=~ (pzp)/A, we can rewrite EqS4)—(6) as fixed a;, b; annihilate all the line solitons. In other words,
the only allowed line solitons must be perpendicular to the
axes in the new space coordinatgsandy;. So the multi-
Eaxlayl[tanfl(g/f )], 9 ?romion solution exists only for the following potential
orm:

W= (a1d¢+b1dy)(azdx+bydy)[tan 1(g/f )]

f=1+apexpini+7,), g=expni)+expin,), -
R ' 10 W=y dy [t g(xy,y1, O/ f (XY, (2D)

=pXx;+ w4 t+const, =qy;+ w,t+const.
=Pt 72T AT w2 where the forms o§(x4,yq,t) andf(x4,y;,t) are the same

Now let us discuss in detail the dromion structures for theas that of Eqs(15) and(16), but 7; should be taken as
following (2+1)-dimensional integrable mKdV equation
[18]: 7i=PiX+aiy + wit+ 7i0=p{ X1+ wit+ 70 OF

(22)
Uy + U+ Uyxx T 3UxUxx+ 3Up g — ui_ Uf=0, U= UxUy . 7i=PiX+qy+ oit+ 70=0 Y1+ oit+ 7.

(13)
) ) _ As an example, we write down the explicit formsfodindg
By making use of dependent variable-related transformatiofy, N = 3:

u=-—2tan?!

%), v=log(g?+f?), (12 f(x,y,t)=1+a(l,2exp( 7+ 7o) +a(1,3)exp( 71+ 73)
+a(2,39exp 7.+ 173), (23
the bilinear forms of Eq(11) can be shown as
g(X,y,t) =exp(771) +exp( 7,) + exp( 73)
+a(l,2a(l,3a(2,3exp 1+ 7ot 713),
B(Dx)f-g=(D3+D7+D,)f-g=0. (14) (24)

A(Dy)(f-f+g-9)=D,D(f-f+g-9)=0, (13
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FIG. 1. The plots of the interaction of two dromions for mKdVE formed by a three-line soliton which are characterizge- léy
+y— 291882 =1y, 1913823}, =ox+ 2y — 21732%% =1y, — 1171323%  and 5,=x+2y— 3% =x,— 33 about potentialv. The

times of the figure reada) t= — 20, (b) t=0, (c) t=20. (d) Cross section plotwy= +0.02) in correspondence with), (b), and(c). (e) and
(f) Two cross section plots of dromioh (w=*=0.02, =0.04, and+0.05 at time taken as 20 and 150.

7i=pi X+ wit+ o OF 7=q'y+wit+n,, (25 always be constructed for an equation of ty(2%) in the
standard way5,19:

3 3

p;+ w+g;=0. (26) N N
B. Multi-dromion solutions of the (2+1)-dimensional f=1+ izl exp(7i) + ZJ a;j exp( 7+ ;)
KdV system
n
_ The bilinear form of a (2-1)-dimensional KdV system is I E ay; Ay expl 7+ 7+ 70
given by i<j<k
A(Dy)f-f=A(Dy,Dy,Dyf-f=0, (27

where A is an even function of their variable. It can be

proved that am “plane” soliton solution, if it exists, can

H a;;

i<j

exp 2, m’ : (28)
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W=dy dy, Inf. (32
For simplicity, we shall discuss the dromion structure of the
following ANNV equation:
U+ Uyyyt 3 u( J uxdyH =0 (33
FaX
or
Ut Ugext 3[Uv ], =05 u,=vy. (34

The ANNV equation(34) may be considered as a model for
an incompressible fluid whereandv are the components of
the (dimensionlessvelocity [19]. The spectral transforma-
tion for this system has been investigated in Rgé§.and
[20]. This system has been considered also in Rf] as a
generalization to (2 1) dimensions of the results from Hi-
rota and Satsumf22]. The nonclassical symmetries, Pain-
leve property, and similarity solutions of the system have
been studied by Clarkson and MansfiEl8]. Equation(33)

or (34) has the bilinear formi24|

u=2(logf )y, v=2(logf )y, (35
(DyD+D,DJ)f-f=0. (36)

Obviously, Eq.(36) has the multisolitons solution form ex-
pressed by Eq(28). We write down the three-soliton solu-
tion expression here.

f=1+exp(n1) +exp7,) +exp n3) +a exp 71+ 7,)
+a3exXp( 71+ 73) T A X 72+ 73)

+ 25813223 €XA 71+ 72+ 773), (37

100 30

©
, , , =PiX+ Oy +oit+ 0, Qo+ qip;=0, (39
FIG. 2. The plots of the interaction of two dromions for

mKdVE about potentialw. The related three-line solitons are A(pi—p;) (qi—9) (@ —w;i+(pi—p)°3)
determined by 7,=2x+ 4y~ 12% = 25, ~ 12%, p=2x+ by = A(pff{):_ (qf+q{)(wf+w{+ (pff{)s).
Ly iy LU ma=sx+y— 19188%% = Ly, Pi +P; qi+q; i i T (PiTP; 39

—39Y3%82Rt=_ The times of the figure reada) t=—15, (b) t=0,
and(c) andt=8. The physical field with dromion solution reads
A(P,—P))

B u=2(logf )lel. (40
ajj= A(Pi+Pj)>o’ (29
There is another solution form about E86) except for the
n=piX+qy+oit+ o, A(pi.0i,w)=0. (30 standard three soliton solution of Hirota. Such solution is
given by
For the general syster(28), the physical field possessing
dromion solutions that are localized in all directions and con- =1+ exp(71) +exp(7,) +expl(73) +azexp 71+ 73)

structed by line solitons, should be defined as

+agzexp( 7+ 73), (41)
WEL(&X)K(ﬂx)Inf:(alax"‘bl&y)(azﬂx"‘bzﬂy)lnf.( ) (Q3—q2)(q2+Q3—1)
31 Aga= —
¥ (921 08)(G2— 01— d3)
Equation(31) implies that two kinds of nonparallel line soli- (42
tons are anihilated by two nonparallel linear operatgi&y) _ (d3—d2)(P2—P3) 3
and K(dx) while the dromion which is located at the cross 23~ (P2+P3)(Ax+03)’ @i= =Py

point of the two-line solitons is survived. According to the
same reason above if we take transformation of (B.Eq. It can easily checked that E¢41) is indeed a solution of
(31) can be changed as Egs.(33) and(36).
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FIG. 3. The plots of the interaction of two dromions for KAVE about fieldetermined by Eq(39). The solitons are characterized by
Mm=X+3y—t=x;—t, p=ax+3y—Zt=3y, — 2t and p3=3x+3y—st=13x,— 5t. The times of the figure reada) t=— 20, (b) t
=0, and(c) t=20. (d) Cross section plot{ u=0.05) in correspondence with), (b), and(c). (¢) and(f) Two cross section plots of dromion
A (—u=0.1, 0.2, and 0.3at time taken as 20 and 150.

[l. DROMION INTERACTIONS lutions. It is more straightforward to study the dromion in-

It is known that in (1+1) dimensions, there is no ex- teractions graphically.

change of physical quantities like energy and momentum o{ Figures 1 and 2 are the mterac_:tlon pl_ots of two dromions
the solitons after collision. Except for the phase shifts thehat are formed by three ghost line sqhtons for the mKdv
o : . ’ " equationg13) and (14) about the potential
velocities and shapes are all remained unchanged.
We hope to know whether a similar property is valid or
not for the interactions among dromions for wW=d. o. tan~!
(2+1)-dimensional integrable models. Especially, we hope 1
to learn whether the interactions are dependent on parameter
and solution form or not. In Fig. 1, the three ghost line solitons are characterized by
It is difficult to study the interaction of the dromions ana-
lytically because of the complexity of the multidromion so- 7 =3x+y— 3938823 = 1x, — 91382,

g
)
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7o=2x+ 5y — 3172 =3y, - 317VR%%, (44 e
na=x+2y—3%%t=x,— 3%

and a(1,2), a(1,3), anda(2,3), determined by parameter
(pi»q;) are all nonzero in Eqg15) and (16). In Figs. Xa),
1(b), and Xc), the timet is taken as-20, 0, and 20, respec-
tively. Figure 1d) is a cross section plot of the two dromions
before and after interaction in correspondence with Figs.
1(a), 1(b), and 1c), respectively whilew=const==*+0.02.
Comparing Fig. {d) with Figs. 1a@)—-1(c), one can clearly
see that the shapes of two dromions are totally the sam¢
when they are interacting, this means there is no exchange c
the energy and momentum but there are the phase shifte.sy -
Figure Xe) and 1f) are the cross section plots of the dro- o«
mion A at timet, taken as 20 and 150, respectively, where ®*
is taken ast0.02,+0.04, and+=0.05. We found the shape of **
dromionA at timet=150 is the same as that at tirhe 20. v
That is to say the shape of dromion is stationary if they leave
the area of interaction far away.

In Fig. 2, three ghost line solitons characterized by

7= 2x+ 4y — 1223 =2x, — 123,
2= 2%+ 5y = 31TV =y, — 3172, (49)
73= bx+y— $91%8%% = 1y, — 99824,

Because of the value of the parameter in Etp), a(1,2)

=0, a(1,3)#0, a(2,3)#0 in Egs.(15 and (16). In Figs.
2(a), 2(b), and Zc), the time is taken as-15, 0, and 8,
respectively. Unlike in Fig. 1, from Figs.(®-2(c), we can
see that the shapes of two dromions are changed after intel
action. Conclusively, there are exchanges of energy and mo
mentum between the dromions when they are interacting.

Figure 3 is the interacting plots of two dromions, which ©

formed by _three_ ghost line solitons for the ANNVB4) FIG. 4. A solitoff-dromion interaction of KdVE about field
about physical field determined by Eq(44). The related three-line solitons are charac-

_ terized by 7, =3y=13y;, 7,=2x+y—8t=2x;—8t, and 7;=23x

u=2(logf )y,y,, (489 sy o—3x,—27t. The times in the figure ar&) t— 8, (b)

where the functiorf is determined by Eq(37) while three t=0, and(c) t=6.

line solitons are determined by

M=X+ 3y —t=x;—t,
7,=2X+y—8t=2x,—8t, (48)
7= 53X+ 3y Ft=3y1- Ft, (47)
73=3x+3y—27t=3x,— 27t.

Obviously, from Fig. 3, we can see that the interacting prop-
Because of the selection of parametey,@;) in EQ.(47), the  erties between dromions for the KdV type equati@6) are
interacting constanta(1,2), a(1,3), anda(2,3) are all non-  the same as that of the mKdV equation shown by Fig. 1.
zero in Eq.(37). In Figs. 3a), 3(b), and 3c), the time is  That is to say if the solution of the equation can be taken as
taken as—20, 0, and 20, respectively. FigurédB is cross  the standard form of Hirota, the interaction among dromions
section plot of the two dromions before and after interactions elastic. Figure 4 show us a very interesting phenomena
in correspondence with Figs(8—3(c). Figures 8¢) and 3f)  between Solitoff and dromion. One Solitoff and one dromion
are the cross section plots of the dromibrat time taken as pecome one Solitoff after interaction.
20 and 150, respectively, wheteis taken as—0.1, —0.2,

and—03. . . , IV. SUMMARY AND DISCUSSIONS
Figure 4 is also the interacting plots of two dromion of
Eq. (34) about physical field46). Functionf in Eq. (46) is In summary, we have obtained some multidromion solu-

determined by Eq(41) while three line solitons are charac- tions of the (2+1)-dimensional mKdV type equation and
terized by KdV type equation for some suitable potentials or physical
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fields. The multidromions are constructed by multiline soli-inelastic according to the material properties. In this paper,
tons, e.g., a single dromion is constructed by two line soli-we find there are the same interactive properties between two
tons, a two-dromion solution is constructed by three linedromions, they may be elastic, or inelastic according to
solitons. All the line solitons should be parallel to the newwhether the interaction constants equal zero or not.
axes{xy,y1}. Though we give only the details of dromion interactions
For (1+ 1)-dimensional integrable models, like the KdV for one equation of mKdV family and one equation of KdV
equation, the interaction among solitons is completely elassystem here, we studied also the dromion solutions and their
tic. There is no energy and momentum exchange among solinteractions for other types of KdV equations, like the (2
tons when they are interacting. The only effect of the soliton+ 1)-dimensional Sawada-Kotera equafizf, 13|
interaction is the phase shifts. However, for the
(2+1)-dimensional mKdV family and KdV system, there
are some different interactive properties in one model be-
cause of different forms of solutions. If a multisoliton solu-
tion accords with the standard form of Hirdtll interacting +5u, f uydx (49)
constantsa(i,j) are nonzer§ the interacting between two
dromions formed by three ghost line solitons is completely . . . .
elastic (there is no exchange of energy and momentum ex‘-”‘znﬁd mKdV equations, such as given by Tamizhmemnal.
cept for the phase shjftThis interaction is similar to that in 126]
the (1+1)-dimensional models. If one of three interacting
constants is zerdi.e., the form of multisoliton solution is
different from the standard form of Hirotathe interaction  Similar dromion solutions and the totally same interaction
between two dromions is not completely elastibere is properties for Eqs(49) and (50) can be obtained.
change of shape and exchange of energy and momentum |t seems that for us all the conclusions given above are
fact, this inelastic interaction can be considered as resonagtlid for all the (2+1)-dimensional KdV type and mKdV
behavior of solutiond15]. We study also the behavior of type equations. Whether the similar phenomena could take
solution whent—co through the graphical method. It is place in other (2-1)-dimensional integrable models and/or

found that the shapes of dromions will be not changed whewyen in (1+ 1)-dimensional integrable models is worth fur-
the timet increases if they leave the area of interaction farther studies.

away. This means that dromions constructed in this way are
stationary if they don’'t meet each other.

We have given out the pictures of interaction for
(2+1)-dimensional integrable mKdVE and KdV type equa- This work was supported by the National Natural Science
tion. There are different interaction behaviors between droFoundation of China. The work of one of the authors
mions in one model. The conclusion given above is similanY. X. C.) is also supported in part by the special NSF of
to the collision of the classical particles. It is known that theZhejiang Province RC98022. We would like to thank Profes-
collision between two classical particles may be elastic osor S.-Y. Lou for his helpful discussions.

Up= (Uyxx ™ BUUyx+ U3+ 5y ) — SJ u,ydx+5uuy

Uyytt Uyt Uy =05 vy = Uy (50)

ACKNOWLEDGMENTS

[1] M. Baiti, J. J. P. Leon, L. M. Martina, and F. Pempinelli, Phys. [15] C. R. Gilson, Phys. Lett. A61, 423(1992.

Lett. A 132 432(1988. [16] R. Hirota, Phys. Rev. LetR7, 1192(197J.
[2] A. Davey and K. Stewartson, Proc. R. Soc. London, Ser. A[17] R. Hirota, in Solitons edited by R. K. Bullough and P. J.
360, 592(1978. Caudrey(Springer-Verlag, Berlin, 1980

[3] L. P. Nizhnik, Sov. Phys. DokR5, 707(1980; A. P. Veselov  [18] K. M. Tamizhmani, J. Math. Phy®2, 2635(1991).
and S. P. Novikov, Sov. Math. DokBO, 588 (1984; S. P.  [19] P. G. Esteez and S. Leble, Inverse Profill, 925 (1995.
Novikov and A. P. Veselov, Physica I8, 267(1986. [20] M. J. Ablowitz and P. ClarksorSolitons, Nonlinear Evolution
[4] R. Radha and M. Lakshmanan, J. Math. Pt3f4746(1994). Equations and Inverse Scatteringecture Notes Series 149
[5] J. Hietarintr, Phys. Lett. A49 133(1990. (Cambridge University Pressp. 269.

[6] M. Baiti, J. J. P. M. Manna, and F. Penpinelli, Inverse Prabl. [21] S. B. Leble and N. V. Ustinov, Inverse Prohl, 617 (1991.

271(1986; 3, 25(1987. [ .
22] R. Hirota and J. Satsuma, J. Phys. Soc. Jtn611(1994.
[7]R. Radha and M. Lakshmanan, Phys. Lett18V, 7 (1995. [23] P. A. Clarkson and E. L. Mansfield, Nonlinearif§, 795

[8] S.-Y. Lou, J. Phys. A28, 7227(1995. (1994
[9] S.-Y. Lou, Commun. Theor. Phy&6, 487 (1996. U .
[10] H.-Y. Ruan and Y.-X. Chen, Acta Phys. S8, 241 (1999. [24] M. Jimbo and T. Miwa, Publ. Res. Inst. Math. Soc. Kyoto
[11] J. Hieterinta and R. Hirota, Phys. Lett. 745, 237 (1990. Univ. 19, 943 (1983.
[12] H.-Y. Ruan, Acta. Phys. Sim8, 1781(1999. [25] M. C. Nucci, J. Phys. 22, 2897(1989. _
[13] H.-Y. Ruan and Y.-X. Chen, J. Math. Phy&0, 248 (1999. [26] K. M. Tamizhmani, A. Ramani, and B. Grammaticos, J. Math.

[14] Kwok W. Chow, J. Phys. Soc. Jp5, 1971 (1995. Phys.32, 2635(199).



